- This topic has 2 replies, 2 voices, and was last updated October 23, 2022 at 6:29 am by .
-
Topic
-
I read with great interest the article “Essentialism and Traditionalism in Academic Research” by Ryan Kyger and Blair Fix. I agree with Kyger and Fix that philosophy (particularly as ontology and epistemology) is of crucial importance when we consider science and mathematics. We can make serious mistakes if we apply science and math models blindly and simplistically to the myriad “wicked” or complex / iterative / reflexive problems we face in dealing with what we call “external reality”; meaning reality external to brain or mind. With the wrong methods and applications, science morphs into pseudo-science quicker than a person can say “classical economics”. Category mistakes in empirical ontology (specifically involving real system and formal system ontologies) are at the root of these problems. Kyger and Fix certainly hit the nail on the head with their critique of essentialism.
We should not falsely idealise a model by viewing it as containing some essential form or essence of reality. That was Plato’s mistake as Kyger and Fix point out. The essential form and “essence” of reality is the entirety of reality itself, not any humanly generated sub-set idea, model or equation of it. Essentialism as a theory embodies a reversal of the observed principle of causation or at least a reversal of the “arrow of time” if one prefers to conceptualize it in that manner. The evolution and emergence of the cosmos and then life (so far we can observe these things and the traces or information remaining from past events) clearly indicate the sequence is early cosmos -> “current” cosmos (remembering relativity concerns about simultaneity) – > earth – > humans – > human ideational models – > advanced scientific and mathematical models. The monist whole of the cosmos is generating the “forms” (the formal model systems) through the interactions of “native” modelling systems in the human central nervous system with the external environment. The seeming purity and essentialness of advanced scientific and mathematical models is very much a result of the unavoidable homomorphic principles of modelling and thus of all human modelling that is accurate or accurate enough for empirical and practical purposes. “Homomorphic principles” will be explained below.
Modelling is the only way the human mind understands or misunderstands reality external to the mind. This may seem a big claim but I think it ought to be considered straight forward and uncontroversial after we look at human physiology and neurology. Our vision system provides the most easily understood example.
We can begin this analysis with a consideration of our naïve reification (concretisation) of our pre-rational and rational mental models. This reification is the mistake of taking an abstract model of reality for reality itself. Our pre-consciously generated models, as brain-internal models of what we perceive with our senses, and our subsequent unconscious and conscious ideational elaborations upon them, perforce generate a naïve misunderstanding of their own processes. My view of a room is constructed in my brain via a process commencing with photons being received by the retina. Thence, information is transmitted, via the optic nerve in the form of electrical signals, to the brain. The information or data thus transmitted to the brain is processed by the visual cortex to construct a virtual model of the room in my brain. It is this model which is finally apprehended by the conscious mind after it is transmitted from the pre-conscious nervous system to the conscious nervous system. External reality is truly there (as this treatise certainly holds) but what I perceive experientially is a reconstructed view in my brain. My brain models the room.
Naïvely, we are unaware that a senses-based mental model is a model and we take its picture, constructed in the brain from sense experience as qualia or data, to be simply “what is really there”. Thence, this mental model becomes normalised in the mind and is reified as identical to the external reality outside the mind. The visual model, rendered as being close to identical, in surface appearances at least, to the room, is then as it were superimposed over the actual room, in the virtual-modelling, heads-up-display sense, accurately enough for practical purposes like moving about and locating objects. We experience our internal picture or virtual model of real externality as the real thing, which in survival and evolutionary terms is perfectly apt and functional, when the picture is good enough for those purposes. If this system did not work, complex organisms with complex senses and brain-internal modelling capabilities could not have evolved and survived.
It tends to be forgotten however, or not apprehended at all, that coalesced or constructed perception in the brain remains nonetheless a mental model which is vastly different from and far simpler than the full array of external reality. We routinely and carelessly treat our mental models as wholly real and fully representational. We forget that our senses have limited sensing ranges, that illusions and mistakes are possible and that our brain-internal modelling can be biased and misleading. There is much more of reality and many different aspects to reality than those aspects which we sense and then apprehend, essentially as simulacra, via brain-internal modelling. Also, many of our more elaborated ideational models about the world are either personal illusions or socially shared myths which simplify and distort reality. It is common to all modelling processes that they abstract from reality and simplify in the process, thus introducing initial distortions by omissions and simplifications. Distortions may occur also due to the limitations of the senses and by alterations introduced by brain processing; by information recombination, by selective foregrounding, selective backgrounding and other processes.
We can continue, I argue, in deducing that all successful interaction of humans with environment, including with social environment, involves some “accurate-enough” modelling, specifically as homomorphic modelling. This extends from sense modelling to ideational modelling at all levels from simple language modelling to science models and mathematical models. I could continue with a discussion of the central and indispensable nature of what I term homomorphic modelling. In mathematics, “homomorphic” describes the transformation of one data set into another while preserving relationships between elements in both sets. Thus, I will clearly be talking about models as structure-preserving and process-preserving ideational constructs, sometimes fully formalised, which at the same time unavoidably abstract only selected elements from external reality, which simplify real elements, structures and processes in the modelling process and which yet retain or preserve some “essential” or fundamental structure and process “maps”, homomorphically.
However, I don’t propose to continue if I am not evoking any interest in this line of enquiry. I do think it’s relevant to CasP but I certainly cannot demonstrate it yet. There are lines of enquiry relevant to discussing real systems, formal systems and their interactions at the ontological level. However, if this theory is nonsense, inapplicable or wholly derivative please tell me. I don’t want to waste anybody’s time or any “column-inches” in this forum.
- You must be logged in to reply to this topic.